"use strict"; Object.defineProperty(exports, Symbol.toStringTag, { value: "Module" }); const THREE = require("three"); const constants = require("../_polyfill/constants.cjs"); var GeometryCompressionUtils = { /** * Make the input mesh.geometry's normal attribute encoded and compressed by 3 different methods. * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the normal data. * * @param {THREE.Mesh} mesh * @param {String} encodeMethod "DEFAULT" || "OCT1Byte" || "OCT2Byte" || "ANGLES" * */ compressNormals: function(mesh, encodeMethod) { if (!mesh.geometry) { console.error("Mesh must contain geometry. "); } const normal = mesh.geometry.attributes.normal; if (!normal) { console.error("Geometry must contain normal attribute. "); } if (normal.isPacked) return; if (normal.itemSize != 3) { console.error("normal.itemSize is not 3, which cannot be encoded. "); } const array = normal.array; const count = normal.count; let result; if (encodeMethod == "DEFAULT") { result = new Uint8Array(count * 3); for (let idx = 0; idx < array.length; idx += 3) { const encoded = this.EncodingFuncs.defaultEncode(array[idx], array[idx + 1], array[idx + 2], 1); result[idx + 0] = encoded[0]; result[idx + 1] = encoded[1]; result[idx + 2] = encoded[2]; } mesh.geometry.setAttribute("normal", new THREE.BufferAttribute(result, 3, true)); mesh.geometry.attributes.normal.bytes = result.length * 1; } else if (encodeMethod == "OCT1Byte") { result = new Int8Array(count * 2); for (let idx = 0; idx < array.length; idx += 3) { const encoded = this.EncodingFuncs.octEncodeBest(array[idx], array[idx + 1], array[idx + 2], 1); result[idx / 3 * 2 + 0] = encoded[0]; result[idx / 3 * 2 + 1] = encoded[1]; } mesh.geometry.setAttribute("normal", new THREE.BufferAttribute(result, 2, true)); mesh.geometry.attributes.normal.bytes = result.length * 1; } else if (encodeMethod == "OCT2Byte") { result = new Int16Array(count * 2); for (let idx = 0; idx < array.length; idx += 3) { const encoded = this.EncodingFuncs.octEncodeBest(array[idx], array[idx + 1], array[idx + 2], 2); result[idx / 3 * 2 + 0] = encoded[0]; result[idx / 3 * 2 + 1] = encoded[1]; } mesh.geometry.setAttribute("normal", new THREE.BufferAttribute(result, 2, true)); mesh.geometry.attributes.normal.bytes = result.length * 2; } else if (encodeMethod == "ANGLES") { result = new Uint16Array(count * 2); for (let idx = 0; idx < array.length; idx += 3) { const encoded = this.EncodingFuncs.anglesEncode(array[idx], array[idx + 1], array[idx + 2]); result[idx / 3 * 2 + 0] = encoded[0]; result[idx / 3 * 2 + 1] = encoded[1]; } mesh.geometry.setAttribute("normal", new THREE.BufferAttribute(result, 2, true)); mesh.geometry.attributes.normal.bytes = result.length * 2; } else { console.error("Unrecognized encoding method, should be `DEFAULT` or `ANGLES` or `OCT`. "); } mesh.geometry.attributes.normal.needsUpdate = true; mesh.geometry.attributes.normal.isPacked = true; mesh.geometry.attributes.normal.packingMethod = encodeMethod; if (!(mesh.material instanceof PackedPhongMaterial)) { mesh.material = new PackedPhongMaterial().copy(mesh.material); } if (encodeMethod == "ANGLES") { mesh.material.defines.USE_PACKED_NORMAL = 0; } if (encodeMethod == "OCT1Byte") { mesh.material.defines.USE_PACKED_NORMAL = 1; } if (encodeMethod == "OCT2Byte") { mesh.material.defines.USE_PACKED_NORMAL = 1; } if (encodeMethod == "DEFAULT") { mesh.material.defines.USE_PACKED_NORMAL = 2; } }, /** * Make the input mesh.geometry's position attribute encoded and compressed. * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the position data. * * @param {THREE.Mesh} mesh * */ compressPositions: function(mesh) { if (!mesh.geometry) { console.error("Mesh must contain geometry. "); } const position = mesh.geometry.attributes.position; if (!position) { console.error("Geometry must contain position attribute. "); } if (position.isPacked) return; if (position.itemSize != 3) { console.error("position.itemSize is not 3, which cannot be packed. "); } const array = position.array; const encodingBytes = 2; const result = this.EncodingFuncs.quantizedEncode(array, encodingBytes); const quantized = result.quantized; const decodeMat = result.decodeMat; if (mesh.geometry.boundingBox == null) mesh.geometry.computeBoundingBox(); if (mesh.geometry.boundingSphere == null) mesh.geometry.computeBoundingSphere(); mesh.geometry.setAttribute("position", new THREE.BufferAttribute(quantized, 3)); mesh.geometry.attributes.position.isPacked = true; mesh.geometry.attributes.position.needsUpdate = true; mesh.geometry.attributes.position.bytes = quantized.length * encodingBytes; if (!(mesh.material instanceof PackedPhongMaterial)) { mesh.material = new PackedPhongMaterial().copy(mesh.material); } mesh.material.defines.USE_PACKED_POSITION = 0; mesh.material.uniforms.quantizeMatPos.value = decodeMat; mesh.material.uniforms.quantizeMatPos.needsUpdate = true; }, /** * Make the input mesh.geometry's uv attribute encoded and compressed. * Also will change the mesh.material to `PackedPhongMaterial` which let the vertex shader program decode the uv data. * * @param {THREE.Mesh} mesh * */ compressUvs: function(mesh) { if (!mesh.geometry) { console.error("Mesh must contain geometry property. "); } const uvs = mesh.geometry.attributes.uv; if (!uvs) { console.error("Geometry must contain uv attribute. "); } if (uvs.isPacked) return; const range = { min: Infinity, max: -Infinity }; const array = uvs.array; for (let i = 0; i < array.length; i++) { range.min = Math.min(range.min, array[i]); range.max = Math.max(range.max, array[i]); } let result; if (range.min >= -1 && range.max <= 1) { result = new Uint16Array(array.length); for (let i = 0; i < array.length; i += 2) { const encoded = this.EncodingFuncs.defaultEncode(array[i], array[i + 1], 0, 2); result[i] = encoded[0]; result[i + 1] = encoded[1]; } mesh.geometry.setAttribute("uv", new THREE.BufferAttribute(result, 2, true)); mesh.geometry.attributes.uv.isPacked = true; mesh.geometry.attributes.uv.needsUpdate = true; mesh.geometry.attributes.uv.bytes = result.length * 2; if (!(mesh.material instanceof PackedPhongMaterial)) { mesh.material = new PackedPhongMaterial().copy(mesh.material); } mesh.material.defines.USE_PACKED_UV = 0; } else { result = this.EncodingFuncs.quantizedEncodeUV(array, 2); mesh.geometry.setAttribute("uv", new THREE.BufferAttribute(result.quantized, 2)); mesh.geometry.attributes.uv.isPacked = true; mesh.geometry.attributes.uv.needsUpdate = true; mesh.geometry.attributes.uv.bytes = result.quantized.length * 2; if (!(mesh.material instanceof PackedPhongMaterial)) { mesh.material = new PackedPhongMaterial().copy(mesh.material); } mesh.material.defines.USE_PACKED_UV = 1; mesh.material.uniforms.quantizeMatUV.value = result.decodeMat; mesh.material.uniforms.quantizeMatUV.needsUpdate = true; } }, EncodingFuncs: { defaultEncode: function(x, y, z, bytes) { if (bytes == 1) { const tmpx = Math.round((x + 1) * 0.5 * 255); const tmpy = Math.round((y + 1) * 0.5 * 255); const tmpz = Math.round((z + 1) * 0.5 * 255); return new Uint8Array([tmpx, tmpy, tmpz]); } else if (bytes == 2) { const tmpx = Math.round((x + 1) * 0.5 * 65535); const tmpy = Math.round((y + 1) * 0.5 * 65535); const tmpz = Math.round((z + 1) * 0.5 * 65535); return new Uint16Array([tmpx, tmpy, tmpz]); } else { console.error("number of bytes must be 1 or 2"); } }, defaultDecode: function(array, bytes) { if (bytes == 1) { return [array[0] / 255 * 2 - 1, array[1] / 255 * 2 - 1, array[2] / 255 * 2 - 1]; } else if (bytes == 2) { return [array[0] / 65535 * 2 - 1, array[1] / 65535 * 2 - 1, array[2] / 65535 * 2 - 1]; } else { console.error("number of bytes must be 1 or 2"); } }, // for `Angles` encoding anglesEncode: function(x, y, z) { const normal0 = parseInt(0.5 * (1 + Math.atan2(y, x) / Math.PI) * 65535); const normal1 = parseInt(0.5 * (1 + z) * 65535); return new Uint16Array([normal0, normal1]); }, // for `Octahedron` encoding octEncodeBest: function(x, y, z, bytes) { var oct, dec, best, currentCos, bestCos; best = oct = octEncodeVec3(x, y, z, "floor", "floor"); dec = octDecodeVec2(oct); bestCos = dot(x, y, z, dec); oct = octEncodeVec3(x, y, z, "ceil", "floor"); dec = octDecodeVec2(oct); currentCos = dot(x, y, z, dec); if (currentCos > bestCos) { best = oct; bestCos = currentCos; } oct = octEncodeVec3(x, y, z, "floor", "ceil"); dec = octDecodeVec2(oct); currentCos = dot(x, y, z, dec); if (currentCos > bestCos) { best = oct; bestCos = currentCos; } oct = octEncodeVec3(x, y, z, "ceil", "ceil"); dec = octDecodeVec2(oct); currentCos = dot(x, y, z, dec); if (currentCos > bestCos) { best = oct; } return best; function octEncodeVec3(x0, y0, z0, xfunc, yfunc) { var x2 = x0 / (Math.abs(x0) + Math.abs(y0) + Math.abs(z0)); var y2 = y0 / (Math.abs(x0) + Math.abs(y0) + Math.abs(z0)); if (z < 0) { var tempx = (1 - Math.abs(y2)) * (x2 >= 0 ? 1 : -1); var tempy = (1 - Math.abs(x2)) * (y2 >= 0 ? 1 : -1); x2 = tempx; y2 = tempy; var diff = 1 - Math.abs(x2) - Math.abs(y2); if (diff > 0) { diff += 1e-3; x2 += x2 > 0 ? diff / 2 : -diff / 2; y2 += y2 > 0 ? diff / 2 : -diff / 2; } } if (bytes == 1) { return new Int8Array([Math[xfunc](x2 * 127.5 + (x2 < 0 ? 1 : 0)), Math[yfunc](y2 * 127.5 + (y2 < 0 ? 1 : 0))]); } if (bytes == 2) { return new Int16Array([ Math[xfunc](x2 * 32767.5 + (x2 < 0 ? 1 : 0)), Math[yfunc](y2 * 32767.5 + (y2 < 0 ? 1 : 0)) ]); } } function octDecodeVec2(oct2) { var x2 = oct2[0]; var y2 = oct2[1]; if (bytes == 1) { x2 /= x2 < 0 ? 127 : 128; y2 /= y2 < 0 ? 127 : 128; } else if (bytes == 2) { x2 /= x2 < 0 ? 32767 : 32768; y2 /= y2 < 0 ? 32767 : 32768; } var z2 = 1 - Math.abs(x2) - Math.abs(y2); if (z2 < 0) { var tmpx = x2; x2 = (1 - Math.abs(y2)) * (x2 >= 0 ? 1 : -1); y2 = (1 - Math.abs(tmpx)) * (y2 >= 0 ? 1 : -1); } var length = Math.sqrt(x2 * x2 + y2 * y2 + z2 * z2); return [x2 / length, y2 / length, z2 / length]; } function dot(x2, y2, z2, vec3) { return x2 * vec3[0] + y2 * vec3[1] + z2 * vec3[2]; } }, quantizedEncode: function(array, bytes) { let quantized, segments; if (bytes == 1) { quantized = new Uint8Array(array.length); segments = 255; } else if (bytes == 2) { quantized = new Uint16Array(array.length); segments = 65535; } else { console.error("number of bytes error! "); } const decodeMat = new THREE.Matrix4(); const min = new Float32Array(3); const max = new Float32Array(3); min[0] = min[1] = min[2] = Number.MAX_VALUE; max[0] = max[1] = max[2] = -Number.MAX_VALUE; for (let i = 0; i < array.length; i += 3) { min[0] = Math.min(min[0], array[i + 0]); min[1] = Math.min(min[1], array[i + 1]); min[2] = Math.min(min[2], array[i + 2]); max[0] = Math.max(max[0], array[i + 0]); max[1] = Math.max(max[1], array[i + 1]); max[2] = Math.max(max[2], array[i + 2]); } decodeMat.scale( new THREE.Vector3((max[0] - min[0]) / segments, (max[1] - min[1]) / segments, (max[2] - min[2]) / segments) ); decodeMat.elements[12] = min[0]; decodeMat.elements[13] = min[1]; decodeMat.elements[14] = min[2]; decodeMat.transpose(); const multiplier = new Float32Array([ max[0] !== min[0] ? segments / (max[0] - min[0]) : 0, max[1] !== min[1] ? segments / (max[1] - min[1]) : 0, max[2] !== min[2] ? segments / (max[2] - min[2]) : 0 ]); for (let i = 0; i < array.length; i += 3) { quantized[i + 0] = Math.floor((array[i + 0] - min[0]) * multiplier[0]); quantized[i + 1] = Math.floor((array[i + 1] - min[1]) * multiplier[1]); quantized[i + 2] = Math.floor((array[i + 2] - min[2]) * multiplier[2]); } return { quantized, decodeMat }; }, quantizedEncodeUV: function(array, bytes) { let quantized, segments; if (bytes == 1) { quantized = new Uint8Array(array.length); segments = 255; } else if (bytes == 2) { quantized = new Uint16Array(array.length); segments = 65535; } else { console.error("number of bytes error! "); } const decodeMat = new THREE.Matrix3(); const min = new Float32Array(2); const max = new Float32Array(2); min[0] = min[1] = Number.MAX_VALUE; max[0] = max[1] = -Number.MAX_VALUE; for (let i = 0; i < array.length; i += 2) { min[0] = Math.min(min[0], array[i + 0]); min[1] = Math.min(min[1], array[i + 1]); max[0] = Math.max(max[0], array[i + 0]); max[1] = Math.max(max[1], array[i + 1]); } decodeMat.scale((max[0] - min[0]) / segments, (max[1] - min[1]) / segments); decodeMat.elements[6] = min[0]; decodeMat.elements[7] = min[1]; decodeMat.transpose(); const multiplier = new Float32Array([ max[0] !== min[0] ? segments / (max[0] - min[0]) : 0, max[1] !== min[1] ? segments / (max[1] - min[1]) : 0 ]); for (let i = 0; i < array.length; i += 2) { quantized[i + 0] = Math.floor((array[i + 0] - min[0]) * multiplier[0]); quantized[i + 1] = Math.floor((array[i + 1] - min[1]) * multiplier[1]); } return { quantized, decodeMat }; } } }; class PackedPhongMaterial extends THREE.MeshPhongMaterial { constructor(parameters) { super(); this.defines = {}; this.type = "PackedPhongMaterial"; this.uniforms = THREE.UniformsUtils.merge([ THREE.ShaderLib.phong.uniforms, { quantizeMatPos: { value: null }, quantizeMatUV: { value: null } } ]); this.vertexShader = [ "#define PHONG", "varying vec3 vViewPosition;", "#ifndef FLAT_SHADED", "varying vec3 vNormal;", "#endif", THREE.ShaderChunk.common, THREE.ShaderChunk.uv_pars_vertex, THREE.ShaderChunk.uv2_pars_vertex, THREE.ShaderChunk.displacementmap_pars_vertex, THREE.ShaderChunk.envmap_pars_vertex, THREE.ShaderChunk.color_pars_vertex, THREE.ShaderChunk.fog_pars_vertex, THREE.ShaderChunk.morphtarget_pars_vertex, THREE.ShaderChunk.skinning_pars_vertex, THREE.ShaderChunk.shadowmap_pars_vertex, THREE.ShaderChunk.logdepthbuf_pars_vertex, THREE.ShaderChunk.clipping_planes_pars_vertex, `#ifdef USE_PACKED_NORMAL #if USE_PACKED_NORMAL == 0 vec3 decodeNormal(vec3 packedNormal) { float x = packedNormal.x * 2.0 - 1.0; float y = packedNormal.y * 2.0 - 1.0; vec2 scth = vec2(sin(x * PI), cos(x * PI)); vec2 scphi = vec2(sqrt(1.0 - y * y), y); return normalize( vec3(scth.y * scphi.x, scth.x * scphi.x, scphi.y) ); } #endif #if USE_PACKED_NORMAL == 1 vec3 decodeNormal(vec3 packedNormal) { vec3 v = vec3(packedNormal.xy, 1.0 - abs(packedNormal.x) - abs(packedNormal.y)); if (v.z < 0.0) { v.xy = (1.0 - abs(v.yx)) * vec2((v.x >= 0.0) ? +1.0 : -1.0, (v.y >= 0.0) ? +1.0 : -1.0); } return normalize(v); } #endif #if USE_PACKED_NORMAL == 2 vec3 decodeNormal(vec3 packedNormal) { vec3 v = (packedNormal * 2.0) - 1.0; return normalize(v); } #endif #endif`, `#ifdef USE_PACKED_POSITION #if USE_PACKED_POSITION == 0 uniform mat4 quantizeMatPos; #endif #endif`, `#ifdef USE_PACKED_UV #if USE_PACKED_UV == 1 uniform mat3 quantizeMatUV; #endif #endif`, `#ifdef USE_PACKED_UV #if USE_PACKED_UV == 0 vec2 decodeUV(vec2 packedUV) { vec2 uv = (packedUV * 2.0) - 1.0; return uv; } #endif #if USE_PACKED_UV == 1 vec2 decodeUV(vec2 packedUV) { vec2 uv = ( vec3(packedUV, 1.0) * quantizeMatUV ).xy; return uv; } #endif #endif`, "void main() {", THREE.ShaderChunk.uv_vertex, `#ifdef USE_UV #ifdef USE_PACKED_UV vUv = decodeUV(vUv); #endif #endif`, THREE.ShaderChunk.uv2_vertex, THREE.ShaderChunk.color_vertex, THREE.ShaderChunk.beginnormal_vertex, `#ifdef USE_PACKED_NORMAL objectNormal = decodeNormal(objectNormal); #endif #ifdef USE_TANGENT vec3 objectTangent = vec3( tangent.xyz ); #endif `, THREE.ShaderChunk.morphnormal_vertex, THREE.ShaderChunk.skinbase_vertex, THREE.ShaderChunk.skinnormal_vertex, THREE.ShaderChunk.defaultnormal_vertex, "#ifndef FLAT_SHADED", " vNormal = normalize( transformedNormal );", "#endif", THREE.ShaderChunk.begin_vertex, `#ifdef USE_PACKED_POSITION #if USE_PACKED_POSITION == 0 transformed = ( vec4(transformed, 1.0) * quantizeMatPos ).xyz; #endif #endif`, THREE.ShaderChunk.morphtarget_vertex, THREE.ShaderChunk.skinning_vertex, THREE.ShaderChunk.displacementmap_vertex, THREE.ShaderChunk.project_vertex, THREE.ShaderChunk.logdepthbuf_vertex, THREE.ShaderChunk.clipping_planes_vertex, "vViewPosition = - mvPosition.xyz;", THREE.ShaderChunk.worldpos_vertex, THREE.ShaderChunk.envmap_vertex, THREE.ShaderChunk.shadowmap_vertex, THREE.ShaderChunk.fog_vertex, "}" ].join("\n"); this.fragmentShader = [ "#define PHONG", "uniform vec3 diffuse;", "uniform vec3 emissive;", "uniform vec3 specular;", "uniform float shininess;", "uniform float opacity;", THREE.ShaderChunk.common, THREE.ShaderChunk.packing, THREE.ShaderChunk.dithering_pars_fragment, THREE.ShaderChunk.color_pars_fragment, THREE.ShaderChunk.uv_pars_fragment, THREE.ShaderChunk.uv2_pars_fragment, THREE.ShaderChunk.map_pars_fragment, THREE.ShaderChunk.alphamap_pars_fragment, THREE.ShaderChunk.aomap_pars_fragment, THREE.ShaderChunk.lightmap_pars_fragment, THREE.ShaderChunk.emissivemap_pars_fragment, THREE.ShaderChunk.envmap_common_pars_fragment, THREE.ShaderChunk.envmap_pars_fragment, THREE.ShaderChunk.cube_uv_reflection_fragment, THREE.ShaderChunk.fog_pars_fragment, THREE.ShaderChunk.bsdfs, THREE.ShaderChunk.lights_pars_begin, THREE.ShaderChunk.lights_phong_pars_fragment, THREE.ShaderChunk.shadowmap_pars_fragment, THREE.ShaderChunk.bumpmap_pars_fragment, THREE.ShaderChunk.normalmap_pars_fragment, THREE.ShaderChunk.specularmap_pars_fragment, THREE.ShaderChunk.logdepthbuf_pars_fragment, THREE.ShaderChunk.clipping_planes_pars_fragment, "void main() {", THREE.ShaderChunk.clipping_planes_fragment, "vec4 diffuseColor = vec4( diffuse, opacity );", "ReflectedLight reflectedLight = ReflectedLight( vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ), vec3( 0.0 ) );", "vec3 totalEmissiveRadiance = emissive;", THREE.ShaderChunk.logdepthbuf_fragment, THREE.ShaderChunk.map_fragment, THREE.ShaderChunk.color_fragment, THREE.ShaderChunk.alphamap_fragment, THREE.ShaderChunk.alphatest_fragment, THREE.ShaderChunk.specularmap_fragment, THREE.ShaderChunk.normal_fragment_begin, THREE.ShaderChunk.normal_fragment_maps, THREE.ShaderChunk.emissivemap_fragment, // accumulation THREE.ShaderChunk.lights_phong_fragment, THREE.ShaderChunk.lights_fragment_begin, THREE.ShaderChunk.lights_fragment_maps, THREE.ShaderChunk.lights_fragment_end, // modulation THREE.ShaderChunk.aomap_fragment, "vec3 outgoingLight = reflectedLight.directDiffuse + reflectedLight.indirectDiffuse + reflectedLight.directSpecular + reflectedLight.indirectSpecular + totalEmissiveRadiance;", THREE.ShaderChunk.envmap_fragment, "gl_FragColor = vec4( outgoingLight, diffuseColor.a );", THREE.ShaderChunk.tonemapping_fragment, constants.version >= 154 ? THREE.ShaderChunk.colorspace_fragment : THREE.ShaderChunk.encodings_fragment, THREE.ShaderChunk.fog_fragment, THREE.ShaderChunk.premultiplied_alpha_fragment, THREE.ShaderChunk.dithering_fragment, "}" ].join("\n"); this.setValues(parameters); } } exports.GeometryCompressionUtils = GeometryCompressionUtils; exports.PackedPhongMaterial = PackedPhongMaterial; //# sourceMappingURL=GeometryCompressionUtils.cjs.map